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Pell hyperbolas

The general quadratic Diophantine equation in the two unknown integers x and
y is given by

ax2 + by2 = k ,

with a, b and k positive or negative integers.

The Pell equation is a special case of it and, for a fixed non-zero element d ∈ K,
it is

x2 − dy2 = 1. (1)

The Pell hyperbola over a field K is a curve defined as

Cd(K) =
{
(x , y) ∈ K×K | x2 − dy2 = 1

}
. (2)
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Pell hyperbolas

Brahmagupta was one of the first mathematicians to study the solutions of (1);
in particular, he studied the case with d = 83 and d = 92 [3].
He discovered that given two solutions of (1), namely (x1, y1), (x2, y2), also
(x1x2 + dy1y2, x1y2 + y1x2) will be a solution.

From the definition of the Brahmagupta product

(x1, y1)⊗d (x2, y2) = (x1x2 + dy1y2, x1y2 + y1x2),

it follows that (Cd(K),⊗d) is a group where the identity element is the vertex of
the hyperbola with coordinates (1, 0) and the inverse of a point (x , y) is (x ,−y).
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Pell hyperbolas

If K = Fq that is a finite field of order q, with q odd prime or power of an odd
prime, then the group over the Pell hyperbola is cyclic of order q − χq(d) where
χq(d) is the quadratic character of d ∈ Fq, i.e.

χq(d) =


0 if d = 0,
1 if d is a square in Fq,

−1 if d is a non–square in Fq.

All Pell hyperbolas with same value of χq(d) are isomorphic. In particular, if
χq(d) = χq(d

′), then d ′ = ds2 for some s ∈ Fq and the group isomorphism is

δd ,d ′ :
(
Cd(Fq),⊗d

) ∼−−→
(
Cd ′(Fq),⊗d ′

)
,

(x , y) 7−→ (x , y/s).
(3)
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Generalized Pell hyperbolas

The equation of the Pell hyperbola is a particular case of the canonical form of
hyperbolas and ellipses that, over a finite field, is given by

Cc,d(Fq) =
{
(x , y) ∈ Fq × Fq | x2 − dy2 = c

}
.

Considering as identity any point (a, b) ∈ Cc,d(Fq), the Brahmagupta product
can be generalized obtaining ⊗a,b,c,d .

(x1, y1)⊗a,b,c,d (x2, y2) =
1
c
(a,−b)⊗d (x1, y1)⊗d (x2, y2). (4)

The inverse of a point (x , y) becomes the point 1
c (a, b)⊗d (a, b)⊗d (x ,−y).

(
Cc,d(Fq),⊗a,b,c,d

)
is a group.
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Generalized Pell hyperbolas

Theorem
Given c, d ∈ F×q and a point (a, b) ∈ Cc,d(Fq), the following map is a group
isomorphism:

τ a,bc,d :
(
Cd(Fq),⊗d

) ∼−−→
(
Cc,d(Fq),⊗a,b,c,d

)
,

(x , y) 7−→ (a, b)⊗d (x , y).

The inverse group homomorphism is

(τ a,bc,d )
−1 :

(
Cc,d ,⊗a,b,c,d

) ∼−−→
(
Cd ,⊗d

)
,

(x , y) 7−→ (1, 0)⊗a,b,c,d (x , y).
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Generalized Pell hyperbolas

The explicit isomorphism between two generalized Pell hyperbolas with same
parameter d is (

Cc,d(Fq),⊗a,b,c,d

) ∼−−→
(
Cc ′,d(Fq),⊗a′,b′,c ′,d

)
,

(x , y) 7−→ (a′, b′)⊗a,b,c,d (x , y).
(5)

Whereas, if
(
Cc,d(Fq),⊗a,b,c,d

)
and

(
Cc ′,d ′ ,⊗a′,b′,c ′d ′

)
with χq(d) = χq(d

′) and
d ′ = ds2, then composing (τ a,bc,d )

−1, δd ,d ′ and τ a
′,b′

c ′,d ′ results in a group
isomorphism between the two generalized Pell hyperbolas given explicitly by

τ a
′,b′

c ′,d ′ ◦ δd ,d ′ ◦ (τ a,bc,d )
−1(x , y) =

1
c

(
a′(ax − dby) + d ′b′(ay − bx)/s,

a′(ay − bx)/s + b′(ax − dby)
)
.
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Parameterization for Cd(Fq)

Let us consider the quotient ring

Rd ,q = Fq[t]/(t
2 − d) =

{
x + ty | x , y ∈ Fq, t

2 = d
}
,

for any two elements x1 + ty1, x2 + ty2 ∈ Rd ,q, the product naturally induced
from the quotient is

(x1 + ty1)(x2 + ty2) = (x1x2 + dy1y2) + t(x1y2 + y1x2),

which is essentially the classic Brahmagupta product, so that in the following we
will use the notation ⊗d adopted with the Pell hyperbola.
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Parameterization for Cd(Fq)

The invertible elements of Rd ,q with respect to ⊗d as R⊗d
d ,q, may be:

1 if d ∈ F×q is a non–square, then

R⊗d
d ,q = Rd ,q ∖ {0};

2 if d ∈ F×q is a square and s ∈ F× is a square root of d , then

R⊗d
d ,q = Rd ,q ∖ {0,±sy + yt | y ∈ F}.

Thus, we define Pd ,q = R⊗d
d ,q/F

×
q .
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Parameterization for Cd(Fq)

Pd ,q =

{{
[m + t]|m ∈ Fq

}
∪ {[1]}, if d is a non–square,{

[m + t] |m ∈ Fq ∖ {±s}
}
∪ {[1]}, otherwise

∼

{
Fq ∪ {α}, if d is a non–square,
Fq ∖ {±s} ∪ {α}, otherwise.

(6)

The operation ⊗d between canonical representatives in Pd ,q is

m1 ⊗d m2 =


m1, if m2 = α,

m2, if m1 = α,
m1m2+d
m1+m2

, if m1 +m2 ̸= 0,
α, otherwise.

(7)
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Parameterization for Cd(Fq)

Considering the canonical representatives in Pd ,q, the group isomorphism is

ϕd :
(
Pd ,q,⊗d

) ∼−−→
(
Cd(Fq),⊗d

)
,

m 7−→

{(
m2+d
m2−d ,

2m
m2−d

)
, if m ̸= α,

(1, 0), otherwise,

ϕ−1
d :

(
Cd(Fq),⊗d

) ∼−−→
(
Pd ,q,⊗d

)
,

(x , y) 7−→


(x + 1)/y , if y ̸= 0,
0, if (x , y) = (−1, 0),
α, if (x , y) = (1, 0).

Thus, the parameters in Pd ,q of the Pell hyperbola can be obtained considering
the lines y = 1

m (x + 1) for m varying in Fq or m = α.

G. Alecci, A study on the use of Pell hyperbolas in DLP-based cryptosystems 12 / 29



Parameterization for Cd(Fq)

Considering the canonical representatives in Pd ,q, the group isomorphism is

ϕd :
(
Pd ,q,⊗d

) ∼−−→
(
Cd(Fq),⊗d

)
,

m 7−→

{(
m2+d
m2−d ,

2m
m2−d

)
, if m ̸= α,

(1, 0), otherwise,

ϕ−1
d :

(
Cd(Fq),⊗d

) ∼−−→
(
Pd ,q,⊗d

)
,

(x , y) 7−→


(x + 1)/y , if y ̸= 0,
0, if (x , y) = (−1, 0),
α, if (x , y) = (1, 0).

Thus, the parameters in Pd ,q of the Pell hyperbola can be obtained considering
the lines y = 1

m (x + 1) for m varying in Fq or m = α.

G. Alecci, A study on the use of Pell hyperbolas in DLP-based cryptosystems 12 / 29



Parameterization for Cd(Fq)

A geometric interpretation

From a geometrical point of view, the parameter m of a point (x , y) is the slope
of the line through (x , y) and (−1, 0) written considering x variable with y .
Given two points P and Q of the Pell Hyperbola, their product P ⊗d Q is
obtaining by considering the intersection between the hyperbola and the line
through the identity point (1, 0) and parallel to the line through P and Q.

Geometric interpretation of the Brahmagupta product.
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Exponentiation with Rédei rational functions

The product on the parameters can be evaluated efficiently with the Rédei
rational functions, in particular

m⊗de = Qe(m, d),

with
Qn(m, d) =

An(m, d)

Bn(m, d)
,

where An,Bn are two sequences of polynomials obtained by the powers

(m +
√
d)n = An(m, d) + Bn(m, d)

√
d .

An(m, d) and Bn(m, d) can be evaluated by the modified More algorithm.
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Public-key encryption with the Pell hyperbola
Three different ElGamal like schemes

Since the group of the Pell hyperbola is cyclic, it can be applied in Public-Key
Encryption (PKE) schemes where the security is based on the Discrete
Logarithm Problem (DLP), such as the ElGamal PKE scheme.

In particular, three schemes have been studied
ElGamal with Pell hyperbola,
ElGamal with the parameterization,
ElGamal with the obtained isomorphisms.
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Classic ElGamal cryptosystem

KeyGen(n):
1: q ←$ {0, 1}n order of (G , ·)
2: g generator of (G , ·)
3: sk ←$ {2, . . . , q − 1}
4: h = g sk ∈ G
5: pk = (G , g , h)
6: return pk, sk

Encrypt(m, pk):
1: y ←$ {1, . . . , q − 1}
2: e = hy ∈ G
3: c1 = g y ∈ G
4: c2 = m · e ∈ G
5: return c1, c2

Decrypt(c1, c2, pk, sk):
1: e = csk1 ∈ G
2: m = c2 · e−1 ∈ G
3: return m
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ElGamal with the cyclic group (Cd(Zq),⊗d

)

KeyGen(n):
1: q ←$ {0, 1}n power of a prime
2: d ←$ Fq with χq(d) = −1
3: G ←$ Cd(Fq) of order q + 1
4: sk ←$ {2, . . . , q}
5: H = G⊗d sk ∈ Cd(Fq)
6: pk = (q, d ,G ,H)
7: return pk, sk

Let q be a power of a prime n bits long
and after choosing d ∈ Fq, a random
generator G of Cd(Fq) is taken.
Then the algorithm proceeds by taking
a random exponent sk (step 4) and
obtaining a public point H ∈ Cd(Fq).
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ElGamal with the cyclic group (Cd(Zq),⊗d

)

Encrypt(msg, pk):
Require: msg < q
1: y ← msg
2: x =

√
1 + d y2 ∈ Fq

3: r ←$ {2, . . . , q}
4: C1 = G⊗d r ∈ Cd(Fq)
5: C2 = H⊗d r ⊗d (x , y) ∈ Cd(Fq)
6: return C1,C2

Decrypt(C1,C2, pk , sk):
1: (x , y) = (C⊗d sk

1 )−1 ⊗d C2 ∈ Cd(Fq)
2: msg← y
3: return msg

The message determines the y
coordinate of a point, and the
corresponding x is chosen under the
condition (x , y) ∈ Cd(Fq). After taking
a random exponent r , C1 and C2 are
obtained through exponentiations with
the Brahmagupta product.

During the decryption, the point (x , y)
is retrieved as the Brahmagupta product
of the inverse of C⊗d sk

1 with C2.
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ElGamal with the parameterization
(
Pd ,q,⊗d

)

KeyGen(n):
1: q ←$ {0, 1}n power of a prime
2: d ←$ Fq with χq(d) = −1
3: g ←$ Pd ,q of order q + 1
4: sk ←$ {2, . . . , q}
5: h = g⊗d sk ∈ Pd ,q

6: pk = (q, d , g , h)
7: return pk, sk

A random non-square d ∈ Fq is taken.
After choosing a generator g ∈ Pd ,q

and a random exponent sk , a parameter
h = g⊗d sk is evaluated in step 5 with
the modified More algorithm.
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ElGamal with the parameterization
(
Pd ,q,⊗d

)

Encrypt(msg, pk):
Require: msg < q
1: r ←$ {2, . . . , q}
2: c1 = g⊗d r ∈ Pd ,q

3: c2 = h⊗d r ⊗d msg ∈ Pd ,q

4: return c1, c2

Decrypt(c1, c2, pk, sk):
1: msg = −c⊗d sk

1 ⊗d c2 ∈ Pd ,q

2: return msg

The encryption considers the message
as a parameter msg ∈ Pd ,q. Step 1
takes a random exponent r , which is
used in steps 2-3 to obtain the
parameters c1 and c2. The ciphertext
requires half of the space than in the
previous algorithm.

The decryption retrieves the message as
the parameter product between the
inverse of c⊗d sk

1 (which is simply its
opposite) and c2.
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ElGamal with two Pell hyperbolas

KeyGen(n):
1: q ←$ {0, 1}n power of a prime
2: d ∈ Fq minimum with χq(d) = −1
3: g ←$ Pd ,q of order q + 1
4: sk ←$ {2, . . . , q}
5: h = g⊗d sk ∈ Pd ,q

6: pk = (q, d , g , h)
7: return pk, sk

The key generation is analogous to the
previous one, except for the smallest
non-square d taken in step 3, which is
used for the exponentiation in step 6
and then included in the public key.
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ElGamal with two Pell hyperbolas

Encrypt(msg, pk):
Require: msg ≤ (q − 1)2

1: (x , y)← msg
2: d ′ = x2−1

y2 ∈ Fq with χq(d ′) = −1

3: m = x+1
y
∈ Pd′,q

4: r ←$ {2, . . . , q}
5: s =

√
d ′/d ∈ Fq

6: c1 = (gs)⊗d′ r ∈ Pd′,q

7: c2 = (hs)⊗d′ r ⊗d′ m ∈ Pd′,q
8: return c1, c2, d ′

Decrypt(c1, c2, d ′, pk, sk):

1: m = (−c⊗d′ sk
1 )⊗d′ c2

2: msg←
(

m2+d′

m2−d′ ,
2m

m2−d′

)
3: return msg

Step 2 searches for a quadratic
non-residue d ′ ∈ Fq such that
(x , y) ∈ Cd(Fq). Then, in step 3, the
parameter m related to the point is
obtained through the parameterization.
Now, since the public key contains
parameters of points of Cd(Fq), the
isomorphism between Pell hyperbolas
δd ,d ′ is exploited.

In the decryption, analogous to the
previous case, the message must be
retrieved from the point related to the
obtained parameter (step 2).
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Numerical results
Security

Since in all the introduced schemes the parameter d ∈ Fq is a non-square, there
is an explicit group isomorphism between

(
Cd(Fq),⊗d

)
and the multiplicative

subgroup G ⊂ F×
q2 of order q + 1 [2], this is true also for

(
Pd ,q,⊗d

)
through ϕd .

Thus, the DLP related to the Pell hyperbola can be reduced to that in a finite
field that, with respect to the standard security strengths from [1] for ElGamal
in Finite Field Cryptography (FFC), has halved size of q.
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Numerical results
Security

Sec. FFC Cd(Fq) Pd,q ϕd′ , δd,d′

80 1024 512 512 512
112 2048 1024 1024 1024
128 3072 1536 1536 1536
192 7680 3840 3840 3840
256 15360 7680 7680 7680

Field size in bits for different DLP-based cryptosystems depending on the cyclic
group and the classic security strength in bits.
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Numerical results
Data–size

Data–size in bits for ElGamal with FFC, Cd(Fq), Pd ,q and the alternative
formulation, depending on the size n of q and for 80 bits of security.

Formulation par pk sk msg c1, c2

FFC 2n n n n 2n
2048 1024 1024 1024 2048

Cd(Fq) 4n 2n n n 4n
2048 1024 512 512 2048

Pd,q 3n n n n 2n
1536 512 512 512 1024

ϕd , δd,d′ 2n n n 2n 3n
1024 512 512 1024 1536
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Numerical results
Performance

Sec. Alg. FFC Cd (Fq)× 2 Pd,q × 2 ϕd , δd,d′
80 Gen 0.011079 0.011713 0.009781 0.007524

Enc 0.022311 0.059983 0.040459 0.028152
Dec 0.012183 0.023631 0.020472 0.010203

112 Gen 0.074718 0.073778 0.056865 0.038527
Enc 0.149400 0.364686 0.229299 0.164122
Dec 0.077622 0.148194 0.115962 0.057106

128 Gen 0.233983 0.227347 0.171958 0.112873
Enc 0.467730 1.103675 0.689103 0.496599
Dec 0.239429 0.454805 0.347872 0.171190

192 Gen 3.188959 2.811594 2.127992 1.372381
Enc 6.372422 13.791595 8.525471 6.291258
Dec 3.218019 5.630895 4.273549 2.103753

256 Gen 22.874051 18.155630 13.841428 9.519104
Enc 45.766954 87.457496 55.563741 42.658508
Dec 22.981310 36.287580 27.792128 14.464945

Average times in seconds for 10 random instances for fixed msg length, depending on
the security strength.
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Conclusion

The first two new cryptosystems remain interesting from the theoretical point of
view, but are not competitive in practice. On the other hand, the new ElGamal
formulation that exploits the new group isomorphisms ϕd , δd ,d ′ seems to be a
very powerful alternative for DLP–based cryptosystems because of the big
advantage in key and ciphertext size and the comparable times with the classical
ElGamal in FFC.
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